首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   128篇
  免费   5篇
  国内免费   7篇
安全科学   2篇
废物处理   8篇
环保管理   16篇
综合类   20篇
基础理论   30篇
污染及防治   39篇
评价与监测   19篇
社会与环境   6篇
  2023年   1篇
  2022年   8篇
  2021年   4篇
  2020年   2篇
  2019年   4篇
  2018年   6篇
  2017年   8篇
  2016年   6篇
  2015年   3篇
  2014年   14篇
  2013年   16篇
  2012年   5篇
  2011年   5篇
  2010年   6篇
  2009年   6篇
  2008年   5篇
  2007年   6篇
  2006年   2篇
  2005年   4篇
  2004年   3篇
  2003年   9篇
  2002年   1篇
  2001年   1篇
  2000年   1篇
  1999年   1篇
  1995年   1篇
  1993年   1篇
  1967年   1篇
  1965年   1篇
  1964年   1篇
  1963年   1篇
  1960年   1篇
  1959年   1篇
  1958年   2篇
  1957年   1篇
  1955年   1篇
  1954年   1篇
排序方式: 共有140条查询结果,搜索用时 27 毫秒
61.
62.
63.
64.
65.
66.
Transport of soluble toxic substances through porous media lead to some significant geoenvironmental problems, for example, leachate migration from municipal and industrial solid waste resulting from unregulated disposal. Advection, dispersion, diffusion, and decay are reported to be the principal mechanisms in such phenomena. Geotechnical properties of the soil also play a significant role in this deterioration. In the present study, laboratory tests were conducted to formulate an appropriate method for assessment of migration of metal ions, such as nickel, through the soil. Relevant kinetic and process parameters, such as aquifer data, surface area, dielectric constant, pH of zero point charge (pHzpc), and permeability were also studied. One-dimensional mathematical modeling was used to describe the dynamics of the process. The present investigation was carried out at an ash pond site of a thermal power plant situated in West Bengal, India.  相似文献   
67.
Breakthrough adsorption study of migratory nickel in fine-grained soil.   总被引:1,自引:0,他引:1  
The present study was conducted to evaluate the breakthrough curve for nickel adsorption in fine-grained soil from a nearby ash pond site of a thermal power plant. Nickel was found to be the major polluting solute in the ash sluicing wastewater. The adsorption of nickel by vertical soil column batch test and horizontal migration test was carried out in the laboratory. Field investigation was conducted also, by installing test wells around the ash pond site. Experimental results showed a good adsorptive capacity of soil for nickel ions. The breakthrough curves showed a reasonable fitting with a one-dimensional mathematical model. The breakthrough curves yielded from field test results showed good agreement with a two-dimensional mathematical model.  相似文献   
68.
A few physico-chemical and bacteriological parameters on certain locations of the river Torsa was studied. The major characteristics of Torsa river water were high alkalinity, high concentration of free ammonia with respect to albuminoid ammonia and the presence of bacteria of fecal origin. Marked seasonal variations of the parameters were also observed.  相似文献   
69.
Ammonia (NH3) is emitted into the atmosphere by various industries and other sources and causes environmental pollution. Considering the hazards of ammonia, detecting leakage from vessels and pipes demands the use of sensors. Therefore, the development of NH3 gas sensors assumes considerable importance to researchers and regulators and to industry, businesses, and facilities that make, store, or use ammonia. The use of metal oxide sensors (MOS) for detecting NH3 gas, such as zinc oxide (ZnO), has been a topic of interest to researchers seeking methods to detect NH3 gas, even at low concentrations. In this article, an attempt has been made to review the research thus far published on the synthesis of ZnO‐based NH3 gas sensor materials, their characterization, and analyses of their performance. Finally, we make several recommendations regarding the scope of future research. For example, the kinetics of the sensor materials should be determined. Furthermore, extensive studies of gas–solid (NH3–ZnO) adsorption are proposed to ascertain the exact adsorption mechanism in terms of isotherm, kinetics, and diffusive mass transport, and to determine “reversibility” and “recovery” of sensor materials so they can continue sensing and activating alarms when necessary for practical applications.  相似文献   
70.
On percolating water equivalent to 1,156 mm of rainfall, spiromesifen formulation did not leach out of 25-cm long columns, and 62.7 % of this was recovered in 5–10-cm soil depth. In columns treated with the analytical grade, 52.40 % of the recovered spiromesifen was confined to 0–5-cm soil depth, with 0.04 % in leachate fraction, suggesting high adsorption in soil. Results revealed that percolating 400 mL of water, residues of enol metabolite of spiromesifen was detected up to 20–25-cm soil layer, with 23.50 % residues of spiromesifen in this layer and 1.73 % in the leachate fraction indicating that metabolite is more mobile as compared to the parent compound. Results suggested a significant reduction in leaching losses of enol metabolite in amended soil columns with 5 % nano clay, farmyard manure (FYM), and vermicompost. No enol spiromesifen was recovered in the leachate in columns amended with nano clay, vermicompost, and FYM; however, 85.30, 70.5, and 65.40 %, respectively, was recovered from 0–5 cm-soil depth of column after percolating water equivalent to 1,156 mm of rainfall. Spiromesifen formulation is less mobile in sandy loam soil than analytical grade spiromesifen. The metabolite, enol spiromesifen, is relatively more mobile than the parent compound and may leach into groundwater. The study suggested that amendments were very effective in reducing the downward mobility of enol metabolite in soil column. Further, it resulted in greater retention of enol metabolite in the amendment application zone.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号